College of Sciences
Department of Physics \& Astronomy
قسم الفيزياء والفلك

Final Exam Academic Year 1443 Hijri- Second Semester			
Exam Information معلومات الامتحان			
Course name	General Physics		اسم المقرى
Course Code	PHYS 109		رمز المقرّر
Exam Date	06/06/2022	07/11/1443	تاريخ الامتحان
Exam Time	8:00 am		وقّت الامتحان
Exam Duration	3.0 hours	3.0	مدة الامتحان
Classroom No.			رقم قاعة الاغتّبار
Instructor Name			اسم استاذ المقرر
Student Information معلومات الطالب			
Student's Name			اسم الطالب
ID number			الرقم الجامعي
Section No.			رقم الثشبة

General Instructions:

Mobiles and smartwatches should be closed under your seat.
Write your answers (only one letter) in the right
 اكتب إجاباتكّ (حرف واحد فقط) في العمود الأيمن. column.

هنا الجزء خاص بأستاذ المادة
This section is for the instructor only

$\#$	Course Learning Outcomes (CLOs)	Related Questions	Points	Final Score
1	CLO 1: basic concepts and methods of classical mechanics.	$1-27$	40	

If needed, use:

$$
\begin{gathered}
\mathrm{g}=9.8 \mathrm{~m} \cdot \mathrm{~s}^{-2} \\
\rho_{\text {water }}=10^{3} \mathrm{~kg} / \mathrm{m}^{3} \\
k=1 / 4 \pi \varepsilon_{\mathrm{o}}=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \\
\varepsilon_{\mathrm{O}}=8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}
\end{gathered}
$$

Version A

16	A horizontal pipe of diameter 6 cm has a constriction of diameter 2 cm . The velocity of water in the wide pipe is $0.3 \mathrm{~m} / \mathrm{s}$ and the pressure is 100000 Pa . The pressure in the constriction is:					B
	A) 211.6 Pa	B) 96.4 kPa	C) 8200 Pa	D) 8290 kPa	E) 8.29 Pa	
17	If the index of the plastic is 1.33 , then the angle θ is:			Air 55°		B
	A) 48.9°	B) 40.3°	C) 33.6°	D) 38.7°	E) $39.8{ }^{\circ}$	
18	A diverging lens with a focal length of 50 cm is placed 100 cm from a 3.0 cm height flower. The flower's image has a height of					D
	A) 1 mm	B) 2.5 cm	C) -3 cm	D) 1 cm	E) -2.5 cm	
19	Two point charges, Q_{1} and Q_{2}, are separated by a distance R . If the magnitude of each charge is halved and their separation is doubled. The electrical force that each charge exerts on the other is:					E
	A) It increases by a factor of 16 . B) It increases by a factor of 8 . C) It increases by a factor of 2 . D) It decreases by a factor of 8 . E) It decreases by a factor of 16 .					
20	If the electric field at a point 2.8 cm from a small charged object points outward from the object with a strength of $180 \mathrm{kN} / \mathrm{C}$, then the object's charge q , in nC , is about:					B
	A) -16	B) +16	C) -17	D) +18	E) -19	
21	The force of attraction that a $-40.0 \mu \mathrm{C}$ point charge exerts on $\mathrm{a}+108 \mu \mathrm{C}$ point charge has magnitude 4.00 N . How far apart are these two charges?					C
	A) 2.1 m	B) 3.67 m	C) 312 cm	D) 1.13 m	E) 1.13 cm	
22	A parallel plate capacitor is filled with a $1.0-\mathrm{mm}$-thick rutile dielectric layer ($\kappa_{\text {rutile }}=100$). If the area of the capacitor plates is $1.0 \mathrm{~cm}^{2}$, its capacitance is:					B
	A) $8.85 \times 10^{-10} \mathrm{~F}$	B) $8.85 \times 10^{-2} \mathrm{nF}$	C) $8.85 \times 10^{-2} \mathrm{pF}$	D) $8.85 \times 10^{-2} \mu \mathrm{~F}$	E) $8.85 \times 10^{-12} \mathrm{~F}$	
23	The SI unit of electric potential is:					E
	A) J/s	B) N / s	C) C / s	D) J/A	E) J/C	
24	If the radius of a resistance wire is halved then its resistivity will be					E
	A) doubled	B) halved	C) tripled	D) quadrupled	E) still constant	
25	The resistivity of a copper wire carrying 5 A current is $1.7 \times 10^{-8} \Omega . \mathrm{m}$. If the wire is 22 m long and the radius of its cross-sectional area is 0.5 mm then its resistance, in Ω, is:					A
	A) 0.48	B) 4.8×10^{-7}	C) 2.8×10^{-7}	D) $4.2 \times 10^{-18} \quad$ E	2.4×10^{-8}	
26	When an unstable nucleus decays by emitting gamma radiation, the atomic number Z of the nucleus					E
	A) increases by 4	B) increases by 2	C) decreases by 2	D) decreases by 4	E) remains constant	
27	Two different radioactive samples A and B with the same number of nuclei are prepared. If the initial activity of sample A is 5 times larger than that of sample B, how do their half-lives compare?					B
	A) $t_{1 / 2}$ of A is five times larger than $t_{1 / 2}$ of B. B) $t_{1 / 2}$ of A is five times smaller than $t_{1 / 2}$ of B . C) $t_{1 / 2}$ of A is equal to $t_{1 / 2}$ of B . D) $t_{1 / 2}$ of A is twenty-five times larger than $t_{1 / 2}$ of B . E) $t_{1 / 2}$ of B is twenty-five times larger than $t_{1 / 2}$ of A .					

